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Because of the ubiquitous adaptability of our material culture,
some human populations have occupied extreme environments
that intensified selection on existing genomic variation. By
32,000 years ago, people were living in Arctic Beringia, and during
the Last Glacial Maximum (LGM; 28,000–18,000 y ago), they likely
persisted in the Beringian refugium. Such high latitudes provide
only very low levels of UV radiation, and can thereby lead to
dangerously low levels of biosynthesized vitamin D. The physio-
logical effects of vitamin D deficiency range from reduced dietary
absorption of calcium to a compromised immune system and mod-
ified adipose tissue function. The ectodysplasin A receptor (EDAR)
gene has a range of pleiotropic effects, including sweat gland
density, incisor shoveling, and mammary gland ductal branching.
The frequency of the human-specific EDAR V370A allele appears to
be uniquely elevated in North and East Asian and New World
populations due to a bout of positive selection likely to have oc-
curred circa 20,000 y ago. The dental pleiotropic effects of this
allele suggest an even higher occurrence among indigenous peo-
ple in the Western Hemisphere before European colonization. We
hypothesize that selection on EDAR V370A occurred in the Beringian
refugium because it increases mammary ductal branching, and
thereby may amplify the transfer of critical nutrients in vitamin
D-deficient conditions to infants via mothers’ milk. This hypothe-
sized selective context for EDAR V370A was likely intertwined with
selection on the fatty acid desaturase (FADS) gene cluster because it
is known to modulate lipid profiles transmitted to milk from a vita-
min D-rich diet high in omega-3 fatty acids.
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From Thomas Jefferson’s archaeological excavations (1) to
modern genomics (2–4), scientists have been fascinated by

the first migration of humans into the Americas. A myriad of
new evidence reveals that the earliest people in the Western
Hemisphere dispersed from a population that lived in genetic
isolation for thousands of years on the exposed Beringian plat-
form in the Arctic during the Last Glacial Maximum [LGM;
28,000–18,000 y ago (2–7)]. The Arctic is an extreme environ-
ment because of the very low UV radiation (UV) reaching the
earth’s surface at such high latitude. UV is essential to almost all
life forms because it catalyzes biochemical processes, especially
the synthesis of vitamin D (8).
Extreme environments can impact genetic variation and pro-

vide opportunities to elucidate relationships between genotype
and phenotype (9). The classic human example is the range of
our physiological adaptations to the hypoxic conditions of high
altitude, such as are experienced in the highlands of Ethiopia,
the Tibetan Plateau, and the Andean Mountains (10–12). Evi-
dence shows that the populations which have long-occupied
these high-elevation regions have an increased frequency of

red blood cell polymorphisms that likely underlie these physiol-
ogies (10–12).
Here, we investigate whether the population occupying

Beringia during the LGM represents another example of human
adaptation to an extreme environment, this time adapting to very
low UV exposure (Fig. 1). There are two lines of genetic evi-
dence for this: variation in the fatty acid desaturase (FADS) gene
cluster that modulates the manufacture of polyunsaturated fatty
acids and variation in the ectodysplasin A receptor (EDAR) gene
that influences ectodermally derived structures, such as teeth,
hair, and mammary gland ductal branching. A study on selection
on the FADS gene cluster in the ancestral population of Native
Americans has been published previously (13), but, here, we shift
the emphasis from phenotypic effects on older adults to focus on
those that influence fertility via breast milk. We then present
evidence that EDAR may have undergone an episode of selec-
tion in the same population, likely due to its influence on
mammary ductal branching. We hypothesize that the geneti-
cally isolated population which occupied Beringia during the
LGM experienced selection for an increase in vitamin D in
breast milk in response to the low UV environment. Traces of
this previously intense selection appear to still be present in the
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The frequency of the human-specific EDAR V370A isoform is
highly elevated in North and East Asian populations. The gene
is known to have several pleiotropic effects, among which are
sweat gland density and ductal branching in the mammary
gland. The former has led some geneticists to argue that the
near-fixation of this allele was caused by selection for modu-
lation of thermoregulatory sweating. We provide an alterna-
tive hypothesis, that selection instead acted on the allele’s
effect of increasing ductal branching in the mammary gland,
thereby amplifying the transfer of critical nutrients to infants
via mother’s milk. This is likely to have occurred during the Last
Glacial Maximum when a human population was genetically
isolated in the high-latitude environment of the Beringia.
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genetic variation of Native American and North and East Asian
populations today.

The FADS Gene Cluster
Allelic variation in the FADS gene complex corresponds strongly
to geographic ancestry (14, 15), and is the most pronounced al-
lele frequency difference between the Greenlandic Inuit and
other human populations (16). Because modern Western cul-
tures place much attention on the cardiovascular disease risks
associated with diets rich in omega-6 versus omega-3 long-chain
polyunsaturated fatty acids (LC-PUFAs) (17, 18), the high fre-
quencies of these alleles in the Inuit have been primarily inter-
preted as an adaptation to their traditionally meat-rich (and
omega-3–rich) diet (16, 19). However, and surprisingly, 95% of
native Central and South Americans also show evidence of se-
lection on the same FADS polymorphisms, yet these cultural
groups do not traditionally consume diets nearly as rich in
omega-3 fatty acids as do the Inuit, suggesting that their common
ancestral population is characterized by one which did (13).
From an evolutionary perspective, the possibility that the se-

lective force favoring these FADS alleles was a healthier ratio of
omega-3 to omega-6 fatty acids in adults would indicate that the
effect must have been very strong, as selective pressure is rela-

tively low on genetic variation that influences later and post-
reproductive years of life (20). In contrast, even very small posi-
tive effects on fertility and childhood survival have far greater se-
lective power (20). Considering this, the selective benefits of these
FADS polymorphisms are more likely connected to their significant
role in modulating the relative levels of omega-3 and omega-6 fatty
acids during gestation and postnatal growth of infants.
To elaborate, the fatty acids arachidonic acid, docosahex-

aenoic acid (DHA), and eicosapentaenoic acid (EPA) are es-
sential to cognitive and visual development (21). Maternal
polymorphisms in the FADS gene cluster have strong effects on
the levels of EPA and DHA in breast milk [in humans (22–27)
and in other mammals (27, 28)]. This suggests that lipid levels in
a mother’s diet are optimized by specific polymorphisms in her
FADS gene cluster during milk synthesis (Fig. 2A). These poly-
morphisms are therefore a potentially strong target of selection
because fetuses and infants have a very limited ability to syn-
thesize LC-PUFAs on their own and are dependent on their
mother’s genotype to modulate their relative proportions (22–
27). We propose that the phenotypic effects of FADS polymor-
phisms on the LC-PUFA content of breast milk was the primary
target of selection in past human populations that consumed
diets with compromised proportions of omega-3 and omega-
6 fatty acids, such as is seen in the traditional diets of people
living in the Arctic.

EDAR. The human EDAR V370A variant encodes a change in
amino acid sequence in the highly conserved death domain of
EDAR (29–32). EDAR functions as a protein receptor on a cell’s
surface that activates the transcription factor NF-ĸB in the
ectodysplasin pathway (29). Comparative studies show this
pathway is functionally conserved across virtually all vertebrates,
playing essential roles in the development of ectodermal struc-
tures from bird feathers to fish scales (33, 34).
EDAR is one of four genes implicated in hypohidrotic ecto-

dermal dysplasia (HED), a set of ∼150 syndromes characterized
by mild to severe defects in ectodermally derived structures, such
as hair, teeth, breasts, and sweat glands (33, 35–37). In contrast
to HED, the EDAR V370A allele has the opposite effect.
Genome-wide association studies (GWASs) of multiple Asian
populations show that EDAR V370A is correlated with hair shaft
caliber (38, 39), earlobe and chin shape (40), and a suite of
morphological variants on teeth (40–43). Knock-in mouse stud-
ies reveal that the V370A allele leads to a twofold increase in NF-
ĸB activation (30, 31, 44). Just like humans, the EDAR V370A
mouse has thicker hair shafts, an increase in the branching
density of mammary gland ducts, and (inconsistently) an increase
in the number of eccrine glands on the footpads (30, 31).
Several studies conclude that EDAR V370A experienced a

bout of intense positive selection ∼20,000 y ago in northern
China (29, 31, 45). Previous interpretations as to why this se-
lection occurred focused on the associated increase in eccrine
sweat gland density on the fingertips, concluding that the selec-
tion was for improved thermoregulatory sweating during a warm
spell during the LGM (31) or that the increase in sebaceous
glands would offer protection from the cold, dry air of the LGM
(30). These interpretations rely primarily on the current distri-
bution of the allele in living populations (Fig. 3A), which shows
high frequencies of EDAR V370A in North and East Asian and
Native American populations but virtual absence in other pop-
ulations around the world (29–31, 45).
The post-LGM diaspora into the Americas and the subsequent

centuries of European colonization (and genetic admixture) have
dramatically overwritten the allelic variation of ∼20,000 y ago
when EDAR V370A experienced a bout of selective pressure. To
best interpret the evolutionary history of EDAR V370A, we need
information on past allele frequencies. This task is difficult from
a genome sequence approach because of the paucity of ancient

Fig. 1. Geography of Beringia and levels of UV radiation. (A) Map of
Beringia today. Cross-hatching indicates the region in which levels of
UVMED (defined as the amount of UV radiation that will produce minimal
erythema) that reach the Earth’s surface are too low to promote cutaneous
synthesis of vitamin D in humans on a year-by-year basis, requiring dietary
supplementation (modified from ref. 84; projected to show an equal dis-
tance map of Beringia). The black and white region marks the Arctic Circle,
for which there are no Total Ozone Mapping Satellite Data version 7. Other
data show that this region has even less UV-B exposure, as would be
expected from the increased latitude. The areas below the Arctic Circle in
white and light blue are shallow seas as discerned from modern bathymetry
using Etopo2 data, indicating land that would have been exposed during the
LGM. (B) Map of Beringia during the LGM showing the exposure of land at
117 m below current sea level and the reconstructed terrestrial environ-
ments. The shrub tundra is the only area biologically productive enough to
support a human population of the size estimated by molecular data. This
population was genetically isolated for ∼2,500–9,000 y during the LGM be-
cause of the ice to the east and extensive mesic tundra to the west.
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DNA available. However, the pleiotropic effects of EDAR V370A
provide a unique opportunity to more precisely reconstruct its
evolutionary history without DNA sequence data.

Temporal and Geographic Variation of EDAR V370A
As noted previously, EDAR V370A is correlated with a suite of
morphological variants on teeth, the most notable of which is
incisor shoveling (40–43). GWASs report a close relationship
between genotype (EDAR V370A) and this dental phenotype in
living Chinese, Japanese, and Koreans (40–43). In these pop-
ulations, incisor shoveling of any degree correlates with the
presence of one or two copies of the EDAR V370A allele in an
imperfect but clearly additive manner (41–43) (Fig. 3B).
We scored the degree of expression in maxillary incisor

shoveling for 5,333 people from >54 archaeological populations
from across Europe, Asia, and North and South America (Sup-
porting Information and Tables S1 and S2). Incisor shoveling is
absent or expressed only to a slight degree outside of North and
East Asian populations (where EDAR V370A frequencies are
close to zero) but close to ubiquity in Native American pop-
ulations, a pattern long interpreted as the result of an unknown
selective pressure (47, 48) (Fig. 3C).
Considering the GWAS results that indicate an additive effect

of EDAR V370A’s contribution to incisor shoveling, we inter-
preted a score of 1 or greater as evidence of an individual likely
carrying at least one copy of EDAR V370A. There are no
reported instances of a score of 0 among the 3,183 individuals
assessed from North and South America, and as such, no evi-
dence of any Native Americans before European contact without
at least one copy of the EDAR V370A allele (Fig. 3C and Sup-
porting Information). A series of ANOVAs comparing the fre-
quency of each shoveling grade (range: 0–7) across geographic

regions demonstrates that a score of 1 has the greatest variation
between geographic groups, further suggesting that a score of
1 or higher is reflective of the presence of at least one copy of
EDAR V370A (Supporting Information and Table S3).
These phenotypic data strongly suggest that incisor shoveling

(and, concomitantly, the EDAR V370A allele) reached near-
fixation in the population ancestral to all indigenous people of
the Western Hemisphere. Given the timing of the dispersal into
the Americas ∼17,000 y ago (3, 49), these dental data support the
conclusion that EDAR V370A underwent positive selection in
the ancestral Native American population during the LGM, sim-
ilar to what we see with the FADS gene cluster (13), rather than in
a population in what is now China (our evolutionary quantitative
genetic analysis further supports this; Supporting Information).

The Ancestral Population of Native Americans and the LGM
Indigenous people in the Western Hemisphere derive from peo-
ple who occupied latitudes above 55°N in Asia before 40,000 y ago
(50). Well-dated archaeological sites near the mouth of the Yana
River indicate a year-round adaptation to the Beringian Arctic
Zone (latitude of 70°N) by 32,000 calibrated radiocarbon years
(cal) B.P. (51).
Between 28,000 and 18,000 y ago, during the LGM, as aridity

increased and biological productivity reduced dramatically (52),
plants and animals in many parts of the world retreated to re-
fugia, leaving signals of genetic isolation and hybridization that
are documented widely by molecular ecologists (53, 54). Human
populations similarly abandoned arid regions in Africa, Eurasia,
and Australia, as indicated by genetic bottlenecks and evidence
of local settlement hiatus (e.g., refs. 55, 56).
Various lines of evidence suggest that the Native American

lineages during the LGM were genetically isolated in one or

Fig. 2. Overview of breast anatomy, development, milk production, and histology. (A) Genetic influences on milk production summarized from the main
text. The rodent, human, and cow figures indicate the systems from which the results are known. (B) Three stages of mammary development alongside the
genetic mutations known to increase ductal branching. Hormones induce the pubertal and gestation/lactation stages (denoted in pink). In vitamin D-deficient
adipose tissue, ductal branching increases during these two stages of development. The embryonic stage (in green) is not hormonally induced; branching
density is influenced by the ectodysplasin pathway (108) and, specifically, increased by EDAR V370A. (C) Cross-section of a ductal lumen showing the bilayer of
luminal and myoepithelial cells. (D) Schematic of a desmosome, one of the main adhesive structures between mammary luminal cells. The orange lines
represent desmosomal cadherins in the extracellular space. The gray lines in the purple area represent the intracellular filaments. (E) Close-up view of the
desmocolin proteins that comprise the desmo-adhesome. An increase in the activity of the ectodyplasin pathway alters the relative proportions of Dsc2 and
Dsc3, leading to a reduction in the adhesive strength.
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more refugia within Beringia (2, 5–7), and at least one archae-
ological site appears to confirm a human presence in north-
eastern Beringia (latitude of 67°N) during that time frame (57).
Analyses of Native American genetic variation indicate that the
ancestral population was isolated for up to 9,000 y before dis-
persal in North and South America (after 15,000 cal B.P.), with
an effective population size of at least a few thousand individuals
(3, 49, 58).

The “Beringian Standstill” model places the ancestral Native
American population in the Beringian refugium during much or
all of the LGM (2, 5–7), where it was geographically isolated
from the Siberian population by uninhabitable areas in north-
eastern Asia and unable to expand into the Americas because of
the coalesced Laurentide and Cordilleran ice sheets (Fig. 1B).
The genetic isolation is a key point, as evolution occurs more
readily in the absence of gene flow (59). The FADS polymor-
phisms and EDAR V370A likely existed in the pre-LGM ances-
tral populations [although the allele is not present in Denisovans
(60)]. However, there was a significant opportunity for selection
to shift the frequencies of functional alleles dramatically when
this population became genetically isolated in the extreme UV
environment of Beringia, including Arctic Beringia (above 66°N).

Biological Consequences of Low UV
Most vitamin D necessary for human health and reproductive
success is produced through biosynthesis initiated by skin expo-
sure to UV-B photons (61, 62). The lower rates of cutaneous
synthesis of vitamin D that result from low UV environments
have a wide range of health consequences. Vitamin D is among a
large family of fat-soluble micronutrients that accumulate in
adipose tissue proportional to circulating serum levels, and is
released slowly as serum levels reduce (63). The bioactive form
of vitamin D plays a secosteroid hormonal role in permitting
absorption of dietary calcium through the lining of the gut (64).
Through the Vitamin D receptor (Vdr), vitamin D also regulates
expression of more than 220 genes in the human genome, with
significant involvement in immune function and autoimmune
disorders (65, 66). It is therefore not surprising that variation in
immune function and disease risk correlates with latitude and
UV-B exposure (67). Vitamin D also plays an important im-
munomodulatory role at the maternal/fetal interface (the pla-
centa) (68) and is associated with sex-specific variation in birth
weight (69).
However important the immunological role of vitamin D,

adipose tissue appears to be the main phenotypic target of Vdr
(63, 65, 66, 70). Vitamin D deficiency significantly compromises
the metabolic function of adipose tissue, with a wide range of
deleterious health effects (63). Body fat has a remarkable de-
gree of phenotypic plasticity that enables a wide range of es-
sential physiological functions, from maintaining body heat, to
responding to cold, to forming the pink adipocytes in the
mammary glands during pregnancy in anticipation of lactation
(71–73) (Fig. 2A).
Nutritional studies have long shown interrelationships be-

tween vitamin D and LC-PUFAs (74–76). For example, the vi-
tamin D synthesized through skin exposure to UV-B (vitamin
D3) has positive effects on lipid profiles that cannot be repli-
cated with dietary vitamin D2 supplementation (77). These in-
terrelationships result from the effects of vitamin D on adipose
tissue and immunological function, which are modulated by en-
vironmental exposure to UV-B.
Human populations that dispersed into geographic regions

above 30° latitude must have experienced selection for reduced
cutaneous eumelanin pigmentation to facilitate vitamin D bio-
synthesis (78, 79). Selection for depigmented skin phenotypes
has occurred at least twice in modern human evolution and once
in Neanderthals (78, 80), with selective pressure readily detected
in genomic analyses (81–83).
At latitudes above 48° (e.g., 450 km north of Hokkaido, Japan;

Fig. 1A), sunlight reaching the Earth’s surface contains almost no
UV-B except for low levels at or near the summer solstice (84,
85). Year-round human habitation of even more extreme high lat-
itudes leads to vitamin D deficiency that cannot be counterbalanced
by depigmentation alone (84) (Fig. 1A). In these geographic regions,
diets centered on vitamin D-rich foods, such as marine mammals,
oily fish, reindeer, or caribou, have been adopted across a range of

Fig. 3. Relationship between EDAR V370A and degree of incisor shoveling.
(A) Current world-wide allele frequencies of EDAR V370A (in yellow) and
other EDAR haplotypes (in blue) (data from ref. 29). Because these data are
from living people, the Native American data include significant admixture
from European colonization, a population with essentially no occurrence of
EDAR V370A. These modern data likely vastly underrepresent the occurrence
of EDAR V370A among indigenous people before European contact. Current
Asian allele frequencies may be higher than pre-LGM frequencies due to
back-migration from the Beringian population after the end of the LGM, a
migration supported by linguistic data (46). (B) Histogram showing EDAR
V370A genotype and degree of incisor shoveling, demonstrating the im-
perfect but strongly additive nature of EDAR V370A’s influence on incisor
shoveling (adapted from ref. 43). (C) Frequencies of incisor shoveling scores
observed in archaeological populations from Africa, Europe, South Asia, East
Asia, North America, and South America (Table S1). Purple and blue repre-
sent a lack of incisor shoveling, and as such, an individual who is EDAR
V370A−/−. Note the lack of shoveling scores of 0 and 1, and very low oc-
currence of 2, in the indigenous people of the Western Hemisphere, in-
dicating a very high frequency of EDAR V370A before European contact.
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traditional Arctic cultures (85). Archaeological evidence shows that
these dietary innovations correlate with the earliest occupation of
these latitudes (55, 86, 87) and shifts in allele frequencies of the
genes involved in fatty acid synthesis (16).
Dietary practices can mitigate vitamin D deficiency for older

children and adults, but pregnant and nursing mothers and their
breast-feeding infants are still at significant risk because they
need particularly high levels of vitamin D to avoid the litany of
deleterious effects of vitamin D insufficiency (88, 89).

Fat and Vitamin D Content in Milk
Human breast milk varies greatly in fat content, with the relative
proportions of omega-3 and omega-6 fatty acids varying by eth-
nicity independent of maternal diet (90), most likely because of
polymorphisms in the FADS gene cluster as discussed earlier
(22–27). The LC-PUFAs in milk are drawn from the special-
ized pink adipocytes found only in mammary glands, which are
characterized by a higher number of intracellular lipid drop-
lets (71–73) and are dependent on healthy vitamin D levels to
function properly (63).
Vitamin D content in human milk also varies between indi-

viduals and across populations (90–93). Although the effects of
dietary supplementation, sun exposure, and genetic variation
affect the vitamin’s concentration within an individual, there is
nevertheless a strong correlation between maternal and infant
circulating vitamin D levels (94, 95), and both mother and infant
levels are related to each other’s sun exposure (93, 96). Impor-
tantly, vitamin D levels in milk are about threefold lower than
the circulating levels in the mother (97). Endogenously produced
vitamin D3 from UV-B exposure appears to be preferentially
transferred into milk compared with the vitamin D2 consumed
through diet (93). It is thus reasonable to suggest that infants in
extremely low UV environments would be particularly de-
pendent on the mother’s potential capacity to transfer vitamin D
from her adipose stores across the placenta and also into her
breast milk.

Fat, Vitamin D, and the Mammary Gland
Given that vitamin D is intricately intertwined with adipose
physiology, it is not surprising that vitamin D plays a role in
virtually all aspects of mammary gland function, as evinced by
the presence and activation of the Vdr in mesenchymal and ep-
ithelial breast tissue (98, 99). Vitamin D also appears to influ-
ence ductal branching and, with it, milk content.
There are three distinct phases of breast development (Fig.

2B): (i) hormone-independent embryonic development during
which buds form, sprout, and start to branch into the precursor
of the fatty stroma to form a ductal tree; (ii) the onset of pu-
bertal hormonal signaling when terminal end buds form at the
tips of the mammary ducts and start to invade the fat pad from
which they will extract milk fats, vitamins, and other nutrients
(100–102); and (iii) the repeatable hormone-induced cycles of
pregnancy, lactation, and weaning (101, 102).
Vitamin D-deficient adipose tissue has been modeled by an

adipose-specific Vdr knockout (Vdr KO) mouse, revealing sig-
nificant and, from an evolutionary perspective, fascinating sex-
by-diet effects (99). Female mice that are unable to bioactivate
vitamin D in adipocytes exhibit increased visceral adipose tissue
overall, but they have a normal mammary fat pad mass. Al-
though the mass of the mammary fat pad is unaffected by the loss
of Vdr, there is an increase in the ductal branching density within
it (99). Surprisingly, however, this only occurred when the mice
are fed a high-fat diet (reminiscent of traditional human diets in
Artic cultures) (99). These results suggest that ductal branching
is stimulated by adjacent vitamin D-deficient adipose tissue
in response to high-fat diets during the hormonally induced
stages of mammary development (98, 99, 103). In sharp con-
trast to the results for female mice, there are no effects in males

with the adipose-specific Vdr deletion in either the normal or
high-fat diet (99).
The results of the Vdr KO study, bolstered by additional re-

search (reviewed in ref. 73), reveal a sex-specific relationship
between vitamin D deficiency and adipose tissue that includes an
increase in mammary ductal branching during the hormone-
induced stages of breast development (Fig. 2B). This physio-
logical increase in ductal branching in response to very low levels
of vitamin D indicates that other genetic mechanisms that in-
crease ductal branching may be positively selected for in pop-
ulations experiencing chronic vitamin D deficiency, such as in
UV-poor environments at high latitudes.
A completely independent line of evidence suggests that var-

iation in ductal branching influences milk content (Fig. 2A).
Variation in milk vitamin D levels is heritable in cows and shows
evidence of positive selection over the short time frames asso-
ciated with animal domestication, demonstrating that the un-
derlying genetic mechanisms are highly responsive to selective
pressure (104, 105). Milk vitamin D content varies by cattle
breed, with some producing notably higher concentrations irre-
spective of UV exposure (reviewed in ref. 106). Functional as-
sociations of 31 genes expressed in cows producing different milk
protein and fat concentrations include transcriptomes of genes
involved in mammary gland bud elongation (107), suggesting
that mammary duct branching contributes to the genetic un-
derpinnings of variation in milk composition.

EDAR V370A’s Influence on Ductal Branching
The relationship between vitamin D and ductal branching calls
for a renewed consideration of EDAR V370A’s influence on
mammary duct branching density as the phenotypic target of
selection. As with other ectodermally derived structures (e.g.,
teeth), the earliest phase of mammary development results from
epithelial–mesenchymal tissue interactions at embryonic day
11 in the mouse (100–102). Ductal branching is established via
NF-ĸB signaling, a downstream target of the ectodysplasin
pathway (108). The increase in branching observed in mouse
models of EDAR V370A (30, 31, 44) is likely the result of the
EDA/EDAR/NF-ĸB pathway’s influence on the proteins that
modulate the strength of the junctions that adhere the myoepi-
thelial cells of the mammary ducts (109–111) (Fig. 2 C–E), fa-
cilitating or hindering branching during morphogenesis (112).
The more elaborate ductal branching induced by EDAR V370A
during the embryonic stage of mammary development likely
enhances the physiological effect of the increased branching in-
duced by vitamin D deficiency in the later stages of breast de-
velopment (during puberty and gestation/lactation).

Conclusions
The Arctic is an extreme environment for humans because of the
almost complete lack of UV-B exposure that is required for the
biosynthesis of vitamin D. This lack of vitamin D would have
reduced immunological function and bone development and
hindered the healthy function of adipose tissue. Here, we have
presented a diverse array of evidence supporting the hypothesis
that a genetically isolated population living in this environment
during the LGM ∼20,000 y ago experienced selection for poly-
morphisms in the FADS gene cluster and for EDAR V370A be-
cause of the advantage these genetic variants likely confer in
transmitting nutrients from mother to infant through breast milk
under conditions of extremely low UV.
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